Order Parameter Equations for Front Transitions: Nonuniformly Curved Fronts
نویسندگان
چکیده
Kinematic equations for the motion of slowly propagating, weakly curved fronts in bistable media are derived. The equations generalize earlier derivations where algebraic relations between the normal front velocity and its curvature are assumed. Such relations do not capture the dynamics near nonequilibrium Ising-Bloch (NIB) bifurcations, where transitions between counterpropagating Bloch fronts may spontaneously occur. The kinematic equations consist of coupled integro-differential equations for the front curvature and the front velocity, the order parameter associated with the NIB bifurcation. They capture the NIB bifurcation, the instabilities of Ising and Bloch fronts to transverse perturbations, the core structure of a spiral wave, and the dynamic process of spiral wave nucleation.
منابع مشابه
Complex patterns in reaction-diffusion systems: A tale of two front instabilities.
Two front instabilities in a reaction-diffusion system are shown to lead to the formation of complex patterns. The first is an instability to transverse modulations that drives the formation of labyrinthine patterns. The second is a nonequilibrium Ising-Bloch (NIB) bifurcation that renders a stationary planar front unstable and gives rise to a pair of counterpropagating fronts. Near the NIB bif...
متن کاملExcitation fronts on a periodically modulated curved surface
The evolution of an excitation front propagating on a nonuniformly curved surface is considered within the framework of a kinematical model of its motion. For the case of a surface with a periodically modulated curvature an exact solution of the front shape is obtained under the assumption of sufficiently small surface deformation. The results of the theoretical consideration are compared with ...
متن کاملComplex Patterns in Reaction-diiusion Systems: a Tale of Two Front Instabilities
Two front instabilities in a reaction-diiusion system are shown to lead to the formation of complex patterns. The rst is an instability to transverse modulations that drives the formation of labyrinthine patterns. The second is a Nonequilibrium Ising-Bloch (NIB) bifurcation that renders a stationary planar front unstable and gives rise to a pair of counterpropagating fronts. Near the NIB bifurc...
متن کاملExcitation fronts in a spatially modulated light-sensitive Belousov-Zhabotinsky system.
The evolution of excitation wave fronts in a spatially modulated light-sensitive Belousov-Zhabotinsky system is investigated experimentally and theoretically. The excitation wave propagates in a thin, quasi-two-dimensional reaction layer, which is illuminated through a periodical gray level mask. The light-induced differences in excitability and velocity give rise to a temporal and spatial modu...
متن کاملOrder parameter description of walk-off effect on pattern selection in degenerate optical parametric oscillators
Degenerate optical parametric oscillators can exhibit both uniformly translating fronts and nonuniformly translating envelope fronts under the walk-off effect. The nonlinear dynamics near threshold is shown to be described by a real convective Swift-Hohenberg equation, which provides the main characteristics of the walk-off effect on pattern selection. The predictions of the selected wave vecto...
متن کامل